Deliverable D2.2
Prototyping best performing new eco-friendly insulating façade insulation panels

Grant Agreement number 723916
Project acronym InnoWEE
Project full title INNOvative pre-fabricated components including different Waste construction materials reducing building Energy and minimising Environmental impacts
Due date of deliverable 31/03/2018
Lead beneficiary CNR-ICMATE
Other authors CNR-ISAC, CNR-ITC, ZAG, PIETRE, TEC

Dissemination Level

<table>
<thead>
<tr>
<th>PU</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Confidential, only for members of the consortium (including the Commission Services)</td>
</tr>
<tr>
<td>CI</td>
<td>Classified, as referred to in Commission Decision 2001/844/EC</td>
</tr>
</tbody>
</table>
InnoWEE D2.2 “Prototyping best performing new eco-friendly insulating façade insulation panels”

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/02/2018</td>
<td>CNR-ICMATE</td>
<td>Creation of the document</td>
</tr>
<tr>
<td>2</td>
<td>02/03/2018</td>
<td>CNR-ICMATE</td>
<td>Improved draft</td>
</tr>
<tr>
<td>3</td>
<td>08/03/2018</td>
<td>ZAG</td>
<td>Addition of preliminary impact tests</td>
</tr>
<tr>
<td>4</td>
<td>09/03/2018</td>
<td>TECNALIA</td>
<td>Addition of section about Historical Buildings</td>
</tr>
<tr>
<td>5</td>
<td>11/03/2018</td>
<td>Pietre</td>
<td>Revision</td>
</tr>
<tr>
<td>6</td>
<td>15/03/2018</td>
<td>ITC</td>
<td>Inclusion of analytical evaluation of the thermal performance of ETCS-like system</td>
</tr>
<tr>
<td>7</td>
<td>15/03/2018</td>
<td>CIRCe</td>
<td>Addition of notes about design of fastening systems and design of the equipment for WGP</td>
</tr>
<tr>
<td>8</td>
<td>16/03/2018</td>
<td>CNR-ICMATE</td>
<td>Version sent to reviewers</td>
</tr>
<tr>
<td>9</td>
<td>23/03/2018</td>
<td>CNR-ICMATE</td>
<td>Addition of coating and plaster characterization provided by AMS</td>
</tr>
<tr>
<td>10</td>
<td>26/03/2018</td>
<td>ECO</td>
<td>Revision by first reviewer</td>
</tr>
<tr>
<td>11</td>
<td>27/03/2018</td>
<td>RED</td>
<td>Revision by second reviewer</td>
</tr>
<tr>
<td>12</td>
<td>29/03/2018</td>
<td>CNR-ICMATE</td>
<td>Version sent to Coordinators</td>
</tr>
<tr>
<td>13</td>
<td>30/03/2018</td>
<td>CNR-ISAC</td>
<td>Approved and submitted version by the Coordinator</td>
</tr>
</tbody>
</table>

Disclaimer

This document is the property of the InnoWEE Consortium.

This document may not be copied, reproduced, or modified in the whole or in the part for any purpose without written permission from the InnoWEE Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Commission under the Horizon 2020 research and innovation programme. The contents of this publication do not necessarily reflect the Commission’s own position. The document reflects only the author’s views and the Community is not liable for any use that may be made of the information contained therein.
Contents

Publishable summary .. 4
List of Figures .. 5
List of Tables ... 7
Abbreviations ... 7
Symbols ... 8
Introduction .. 8
Part 1 Panels for ETICS-like external insulation .. 10
1 General features of the ETICS-like panel ... 11
 1.1 Geometry .. 11
 1.2 Insulator ... 11
 1.3 Surface textures and colours .. 13
 1.3.1 General aspects ... 13
 1.3.2 Multifunctional coating .. 14
 1.3.2.1 General features .. 14
 1.3.2.2 Conclusive remarks ... 15
 1.4 Fastening system ... 16
 1.5 Dismantling ... 16
2 HDG binder ... 17
 2.1 Raw materials .. 17
 2.1.1 Features of the new metakaolin .. 17
 2.1.2 Performance of the new metakaolin ... 19
 2.1.3 Features of commercial K-silicate activators ... 19
 2.1.4 Performance of commercial K-silicate activators ... 20
 2.1.5 Features of fly-ash ... 20
 2.1.6 Performance of fly-ash ... 21
 2.1.7 Features of the waste aggregates ... 22
 2.2 Increment of fluidity and open time ... 23
 2.3 Candidate mixture for upscaling ... 25
 2.3.1 Components and proportions ... 25
 2.3.2 Preparation process .. 27
 2.3.3 Curing phase ... 27
 2.3.4 Post-curing drying/storage conditions .. 28
3 Tested production methods for ETICS-like panels .. 29
 3.1 Bottom casting + stamping .. 29
 3.2 Details of the casting box .. 30
 3.3 Specific precautions for casting /demoulding ETICS panels .. 30
4 Assessment of real-scale ETICS-like prototypes ... 32
 4.1 Visual survey of defects .. 32
 4.2 Preliminary impact resistance .. 33
 4.3 Calculated thermal performance of ETICS-like application .. 34
5 Design of the anchoring system .. 36
 5.1 Loads and verifications .. 36
 5.1.1 Self-weight .. 36
 5.1.2 Wind .. 36
 5.1.3 Seismic force ... 37
 5.1.4 Verifications ... 38
6 Demonstrative installation of ETICS-like panels..39
Part 2 Panels for Ventilated Façades ..40
7 General features of the ventilated-façade panel ..41
 7.1 Geometry and textures ...41
 7.2 Fastening system ...42
8 Components of ventilated façade panels ...43
 8.1 HDG binder ..43
 8.2 Wood Geopolymer Panels (WGs) ..43
 8.2.1 Geopolymeric binder ..43
 8.2.2 Wood waste types ..43
 8.2.3 WGP production process ...43
 8.2.4 Design of the press equipment ..44
9 Tested production methods for the HDG element ...46
 9.1 HDG component ..46
 9.1.1 Method 1 – Bottom casting + stamping ...46
 9.1.2 Method 2 – Top casting + rolling ...47
 9.1.3 Details of casting boxes and mould inserts for ventilated-façade panels48
 9.2 Preferred casting method for the HDG component of ventilated-façade panels50
 9.3 Rear WGs ..50
 9.4 Assemblage of the panel ..51
10 Assessment of real-scale ventilated-façade panels ...52
 10.1 Visual survey of defects ...52
 10.2 Preliminary impact resistance ..53
11 Design of the anchoring system ..55
 11.1 Loads and verifications ..55
 11.1.1 Self-weight ..55
 11.1.2 Wind ...55
 11.1.3 Seismic force ..55
 11.1.4 Verifications ...55
 11.1.5 Modelling of the ventilated façade panel ..56
12 Demonstrative installation of ventilated-façade panels ...58
Part 3 Requirements for Historical Buildings ..59
13 Employment of developed new solutions in Historic Buildings ...60
 13.1 Historic Buildings’ definition ..60
 13.2 Interventions limits to be respected or considered in Historic Buildings61
 13.3 Matrix evaluating the suitability of the INNOWEE panels to Historic Buildings62
 13.4 Considerations on applicability of the solutions to Heritage Buildings63
 13.5 Analysis on the applicability in the Virtual Demo Cases of INNOWEE63
 13.5.1 Private House in Piazzola sul Brenta (Padua, Italy) ..63
 13.5.2 House in the settlement of Parikia in Paros (Greece) ..63
 13.5.3 Historical Residential Building (Bucharest, Romania) ..64
 13.5.4 Two blocks in Txuridinaga neighbourhood in Bilbao (Basque Country, Spain)64
Conclusions ...65
References ...66
Publishable summary

Deliverable D2.2 “Prototyping best performing new eco-friendly insulating façade insulation panels” presented the numerous steps that led to the laboratory assessment of real scale panels, starting from the assessment of geopolymer mixtures.

The prototyping phases required an extensive work that allowed identifying the main issues related to the manufacture of real scale panels, and addressing them to the maximum extent feasible in a laboratory production.

Suitable sizes and geometry of both ETICS-like and ventilated-façade panels were selected, aimed at optimizing their production and installation.

Geopolymer mixtures were further tuned to meet the needs of the pilot-plant production, especially in terms of fluidity and open time, and to improve the behaviour against issues highlighted by real scale prototypes, mainly due to shrinkage cracking.

Various casting options were tested to determine the most suitable for serving as a base for the scaled-up production, which finally was that labelled as “bottom cast + stamping”.

The assessment of panels was carried out by testing their main physico-mechanical properties and by analytical calculation of their thermal properties, which were particularly of interest only for ETICS-like panels.

For both ETICS-like and ventilated-façade panels, a suitable fastening method was selected and designed, in order to prove their potential compliance with building regulations in force.

Moreover, preliminary installation tests were carried out on a sacrificial wall to demonstrate their applicability in real cases.

Finally, proper insulating materials, appearance (textures and colours) and dedicated requirements for historical buildings were discussed.
List of Figures

Figure 1. Sketch of ETICS-like panels (a), with an illustrative render (b) .. 11
Figure 2. Prototypes with tested insulators: (a) XPS; (b) low-density mineral insulator (autoclaved aerated calcium silicate); and (c) rockwool ... 11
Figure 3. (a) Coupling issues between autoclaved aerated calcium silicate insulator; (b) carved rockwool and stiffened HDG layer; (c) detail of the anchorage at the corner ... 12
Figure 4. Selected EPS insulator ... 13
Figure 5. Various tested textures for the exterior surface of HDG layers ... 13
Figure 6. Colours related to the type of waste included in the HDG: (a) concrete; (b) fired clay; and (c) blend of concrete and fired clay ... 13
Figure 7. Example of coating and painting applied to a HDG plate .. 14
Figure 8. On lab-made Top coating integrated in cement samples .. 15
Figure 9. (a) Geometrical features of a 50×50 cm² prototype of ETICS-like panel and (b) standard thermal-break fasteners ... 16
Figure 10. Trial removal of the XPS insulation from the HDG layer ... 16
Figure 11. PSD by volume of the former (a) and the current (b) metakaolin reported in their technical datasheet ... 18
Figure 12. results of the Rietveld QPA’s on metakaolin M 1000 .. 18
Figure 13. SEM micrograph (backscattered electrons signal) of metakaolin samples 19
Figure 14. EDS microanalysis of the amorphous matrix of metakaolin .. 19
Figure 15. Comparison of mixtures with the new metakaolin .. 19
Figure 16. Performance of commercial K-silicate compared to the in-house preparation 20
Figure 17. Results of the Rietveld QPA on fly-ash ... 21
Figure 18. SEM micrograph (backscattered electrons signal) of fly-ash samples 21
Figure 19. EDS microanalysis of the amorphous matrix of fly-ash ... 21
Figure 20. Effect on strength of the use of class F fly ash ... 22
Figure 21. PSD of recent trial productions of milled inorganic wastes ... 23
Figure 22. Fluid mixtures compared in terms of compressive strength and initial viscosity. The smaller number indicates the K/Al weight ratio, while the overall water content is inside the vertical shape at the bottom. Results of reference mixtures have a black frame ... 24
Figure 23. Fluid mixtures compared in terms of compressive strength and 7-day drying shrinkage. The smaller number indicates the K/Al weight ratio, while the overall water content is inside the vertical shape at the bottom. Results of reference mixtures have a black frame ... 24
Figure 24. Fluid mixtures compared in terms of compressive strength and minimum open time. The smaller number indicates the K/Al weight ratio, while the overall water content is inside the vertical shape at the bottom. Results of reference mixtures have a black frame ... 25
Figure 25. Steps of the “bottom casting + stamping” production process for ETICS-like panels 29
Figure 26. Photographic sequence of the ETICS-like panel casting process ... 29
Figure 27. (a) Roughening of EPS panel with a metal brush prior to casting; (b) masking of EPS edges with plastic scotch tape; (c) removing of masking tape and excess of geopolymer from EPS edges after demoulding; (d) ETICS-like panel with clean EPS edges ... 31
Figure 28. Tested ETICS-like sample IG136 (EPS covered with HDG layer) ... 33
Figure 29. Impact resistance (3 Joules) of sample IG136 (slight damage) .. 34
Figure 30. : Impact resistance (10 Joules) of sample IG136 ... 34
Figure 31. European wind map ... 37
Figure 32. European Seismic Hazard Map from the EU Project SHARE [25] 37
Figure 33. Disposition of adhesive and fasteners on the ETICS-like panel 100 × 50 cm² 38
Figure 34. ETICS-like installation test: (a) sample wall; (b) bonding of the panel to the wall; (c) application of thermal-break fasteners .. 39
Figure 35. Bonding of the protruding lips: (a) application of glue; (b) superposition of the next panel ... 39
Figure 36. Filling of joints (a) and final result (b) .. 39
Figure 37. Sketch of the ventilated-façade panel (solution with four vertical ribs) 41
Figure 38. Detail of the anchoring lip (a) and the selected commercial solution for the fastening (b) 42
Figure 39. Solution with two (a) and four (b) vertical stiffening ribs, prior to the bonding of WGP...... 42
Figure 40. Initially used wood shavings (a) and final shredded wood chips and flakes (b) [9] 43
Figure 41. Phases of the “dry” preparation method .. 44
Figure 42. Sketch of the top (a) and bottom (b) plate that equip the press to allow WGP production.... 45
Figure 43. View of the FE model of the upper (a) and bottom (b) plate ... 45
Figure 44. Example of FEM outputs for the top (a) and bottom (b) plate; press equipped for WGP production (c) ... 45
Figure 45. Steps of the “bottom casting + stamping” production process for ventilated-façade panels . 46
Figure 46. Photographic sequence of the ventilated-façade panel casting process – bottom casting + stamping ... 47
Figure 47. Steps of the “top casting + rolling” production process for ventilated-façade panels 48
Figure 48. Photographic sequence of the ventilated-façade panel casting process – top casting + rolling ... 48
Figure 49. Example of casting box for: (a) “bottom casting + stamping” and (b) top casting + rolling” procedures ... 49
Figure 50. Dimensioning of a roller for an easy laying down of the flexible texture insert with the “top casting + rolling” method. .. 49
Figure 51. Single (a) and segmented (b) mould insert for four-rib panels .. 50
Figure 52. Bonding of WGP to HDG: (a) HDG panel after demoulding; (b) wetting of the cured HDG layer; (c) application of a commercial adhesive; (d) gluing of the wood elements; front (e) and read (f) side of the finished panel .. 51
Figure 53. Tested ventilated-façade sample IG129 .. 54
Figure 54. Impact resistance of sample IG129: 3 J (a); 10 J (b) .. 54
Figure 55. Front (a) and back (b) view of the FE model of the ventilated façade panel 56
Figure 56. Example of principal tensile stress distribution for load combination of wind in suction: front (a) and back (b) ... 57
Figure 57. Example of principal tensile stress distribution for load combination of wind in pressure: front (a) and back (b) ... 57
Figure 58. Example of principal tensile stress distribution for seismic load combination: front (a) and back (b) ... 57
Figure 55. Ventilated-façade panels installation test: (a) sample wall; (b) application of the first vertical line of fasteners; (c) on-site drilling of a panel to allow for the insertion of the anchorage pin 58
Figure 56. (a) Detail of the top anchors; (b) intermediate step; (c) final result 58
List of Tables

Table 1. Ingredients used for the development of the top coating system ... 14
Table 2. Recipes for obtaining about 10 kg of fresh HDG with 50% of inorganic waste + 26
Table 3. Synthetic evaluation of ETICS-like prototypes based on visual survey ... 32
Table 4. Stratigraphy of the walls before the retrofit .. 34
Table 5. Stratigraphy of the walls after the retrofit with ETICS ... 34
Table 6. Results of the calculations for different wall configurations ... 35
Table 7. Synthetic evaluation of ventilated-façade prototypes based on visual survey 52
Table 8. Suitability matrix for InnoWEE solutions in case of external applications 62

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDW</td>
<td>Construction and Demolition Waste</td>
</tr>
<tr>
<td>EoL</td>
<td>End-of-Life</td>
</tr>
<tr>
<td>EPS</td>
<td>Expanded PolyStyrene</td>
</tr>
<tr>
<td>ETICS</td>
<td>External Thermal Insulation Composite System</td>
</tr>
<tr>
<td>FA</td>
<td>Fly-Ash</td>
</tr>
<tr>
<td>GPS</td>
<td>Graphite PolyStyrene</td>
</tr>
<tr>
<td>HDG</td>
<td>High Density Geopolymer</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density PolyEthylene</td>
</tr>
<tr>
<td>InnoWEE</td>
<td>Innovative pre-fabricated components including different Waste construction materials reducing building Energy and minimising Environmental impacts</td>
</tr>
<tr>
<td>K-sil</td>
<td>Potassium (K) silicate</td>
</tr>
<tr>
<td>LoW</td>
<td>List of Waste</td>
</tr>
<tr>
<td>MIP</td>
<td>Mercury Intrusion Porosimetry</td>
</tr>
<tr>
<td>MK</td>
<td>Metakaolin</td>
</tr>
<tr>
<td>MR</td>
<td>Molar Ratio SiO₂/M₂O (M = K or Na)</td>
</tr>
<tr>
<td>Na-Sil</td>
<td>Sodium (Na) silicate</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-InfraRed</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic Hydrocarbons</td>
</tr>
<tr>
<td>PAN</td>
<td>PolyAcryloNitrile</td>
</tr>
<tr>
<td>PCB</td>
<td>Polyc-Chlorinated Biphenyls</td>
</tr>
<tr>
<td>PSD</td>
<td>Particle Size Distribution</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RHM</td>
<td>Random Heterogeneous Material</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SL</td>
<td>granulated blast furnace slag</td>
</tr>
<tr>
<td>SRM</td>
<td>Secondary Raw Material</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WG</td>
<td>Wood Geopolymer</td>
</tr>
<tr>
<td>WGP</td>
<td>Wood Geopolymer Panel</td>
</tr>
<tr>
<td>WR</td>
<td>Weight Ratio SiO₂/M₂O (M = K or Na)</td>
</tr>
<tr>
<td>XPS</td>
<td>Extruded PolyStyrene</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>thermal conductivity</td>
<td>$[W \cdot K^{-1}]$</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
<td>$[kg \cdot m^{-3}]$</td>
</tr>
<tr>
<td>ρ_b</td>
<td>bulk density</td>
<td>$[kg \cdot m^{-3}]$</td>
</tr>
<tr>
<td>$\phi = \frac{V_i}{V_{tot}}$</td>
<td>volumetric fraction of the i_{th} component</td>
<td>$[%]$</td>
</tr>
<tr>
<td>$C = \rho c_p$</td>
<td>volumetric heat capacity</td>
<td>$[J \cdot m^{-3} \cdot K^{-1}]$</td>
</tr>
<tr>
<td>c_p</td>
<td>specific heat</td>
<td>$[J \cdot kg^{-1} \cdot K^{-1}]$</td>
</tr>
<tr>
<td>f_c</td>
<td>compressive strength</td>
<td>$[MPa, \text{ i.e. } N/mm^2]$</td>
</tr>
<tr>
<td>f_m</td>
<td>bending strength</td>
<td>$[MPa, \text{ i.e. } N/mm^2]$</td>
</tr>
<tr>
<td>f_{po}</td>
<td>pull-off strength (adhesion strength)</td>
<td>$[MPa, \text{ i.e. } N/mm^2]$</td>
</tr>
<tr>
<td>f_{sp}</td>
<td>splitting strength</td>
<td>$[MPa, \text{ i.e. } N/mm^2]$</td>
</tr>
<tr>
<td>OP</td>
<td>open porosity</td>
<td>$[%]$</td>
</tr>
<tr>
<td>R_c</td>
<td>(cubic) compressive strength</td>
<td>$[MPa, \text{ i.e. } N/mm^2]$</td>
</tr>
<tr>
<td>T_w</td>
<td>density expressed in degrees T_{Wadell}</td>
<td></td>
</tr>
<tr>
<td>V_i</td>
<td>volume of the i_{th} component</td>
<td>$[m^3]$</td>
</tr>
<tr>
<td>V_{tot}</td>
<td>volume of the compound</td>
<td>$[m^3]$</td>
</tr>
<tr>
<td>WA</td>
<td>water absorption</td>
<td>$[%]$</td>
</tr>
</tbody>
</table>