Deliverable D4.1

Identification of the best solutions for an easy installation and disassembly of panels based on architectural evaluation and costs

WP4

Grant Agreement number 723916
Project acronym InnoWEE
Project full title INNOvative pre-fabricated components including different Waste construction materials reducing building Energy and minimising Environmental impacts
Due date of deliverable 31/05/2018
Lead beneficiary MAGNETTI

Dissemination Level

<table>
<thead>
<tr>
<th>Dissemination Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>Public</td>
</tr>
<tr>
<td>CO</td>
<td>Confidential, only for members of the consortium (including the Commission Services)</td>
</tr>
<tr>
<td>CI</td>
<td>Classified, as referred to in Commission Decision 2001/844/EC</td>
</tr>
</tbody>
</table>
InnoWEE D4.1 “Identification of the best solutions for an easy installation and disassembly of panels based on architectural evaluation and costs”

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/05/2018</td>
<td>MB</td>
<td>Creation of the document</td>
</tr>
<tr>
<td>2</td>
<td>16/05/2018</td>
<td>TECNALIA</td>
<td>1st review of the document</td>
</tr>
<tr>
<td>3</td>
<td>24/05/2018</td>
<td>VOUA</td>
<td>2nd review of the document</td>
</tr>
<tr>
<td>4</td>
<td>28/05/2018</td>
<td>CNR-ICMATE</td>
<td>3rd review of the document</td>
</tr>
<tr>
<td>5</td>
<td>28/05/2018</td>
<td>MB</td>
<td>Final version for Coordinator</td>
</tr>
<tr>
<td>6</td>
<td>29/05/2018</td>
<td>CNR-ISAC</td>
<td>Approved and submitted version by the Coordinator</td>
</tr>
</tbody>
</table>

Disclaimer

This document is the property of the InnoWEE Consortium.

This document may not be copied, reproduced, or modified in the whole or in the part for any purpose without written permission from the InnoWEE Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Commission under the Horizon 2020 research and innovation programme. The contents of this publication do not necessarily reflect the Commission’s own position. The documents reflects only the author’s views and the Community is not liable for any use that may be made of the information contained therein.
Contents

Publishable summary ... 5
List of Figures .. 6
List of Tables .. 8
Abbreviations .. 9
Symbols ... 10
Introduction ... 11
1 Installation/Dismantling of ETICs Panels 12
 1.1 The ETICs Panel ... 12
 1.1.1 Geometry and Composition .. 12
 1.2 Fastening system ... 13
 1.2.1 Mechanical fasteners ... 14
 1.2.1.1 Design of the anchoring system 14
 1.2.1.2 Loads ... 15
 1.2.1.3 Verifications .. 16
 1.2.2 Cement Mortar ... 16
 1.2.2.1 Data sheet ... 17
 1.2.3 Silicon Sealing .. 18
 1.2.3.1 Data sheet ... 19
 1.3 Installation .. 19
 1.3.1 Installation phases ... 20
 1.3.1.1 Phase 1: assembly preparation 20
 1.3.1.2 Phase 2: mounting the lower support 20
 1.3.1.3 Phase 3: mortar application on the panels 21
 1.3.1.4 Phase 4: panels gluing ... 21
 1.3.1.5 Phase 5: holes drilling for fasteners 21
 1.3.1.6 Phase 6: mechanical fixing of the panels 22
Installation/Dismantling of Ventilated Panels

2.1 The Ventilated Panels

2.1.1 Geometry and Composition

2.2 Fastening system

2.2.1 HALFEN Body anchors

2.2.1.1 HALFEN HRC 506-1-P-A2 Body anchor

2.2.1.2 Data sheet

2.2.2 Design of the anchoring system

2.2.3 Loads

2.2.4 Verifications

2.3 Installation

2.3.1 Installation phases

2.3.1.1 Phase 1: assembly preparation

2.3.1.2 Phase 2: anchors fastening

2.3.1.3 Phase 3: on-site drilling

2.3.1.4 Phase 4: positioning of the first panel

2.3.1.5 Phase 5: check levelling of the panels

2.3.1.6 Phase 6: installation of all the panels

2.3.1.7 Phase 7: metal flashing installation

2.3.2 Devices for the installation

2.4 Dismantling

2.5 Comments on the installation system
3 Monitoring Campaign ...36

4 Installation/Dismantling of Radiant Panels ...37
 4.1 Radiant Ceiling Panels ..37
 4.1.1 Geometry ..37
 4.1.2 Piping system ..37
 4.2 Installation of radiant ceiling panels ..38
 4.2.1 Design of the anchoring system ..38
 4.3 Dismantling of Radiant Ceiling Panels ..39
 4.4 Radiant Wall Panels ..39
 4.4.1 Geometry ..39
 4.4.2 Piping system ..40
 4.5 Installation of Radiant Wall Panels ..41
 4.5.1 Design of the anchoring system ..41
 4.6 Dismantling of Radiant Wall Panels ..41

5 Demo Sites ..42
 5.1 Pilot demo site – Pilot house at CNR, Padua, Italy ..42
 5.2 1st Real demo site – Old city hall of Voula municipal, Athens, Greece (historical)42
 5.3 2nd Real demo site – Residential Eco-house, Putte-Mechelen, Belgium (new)43
 5.4 3rd Real demo site – Don Orione Residential Care Center, Voluntari, Bucharest, Romania (existing) ..44

6 Costs Evaluation ...45
 6.1 Installation costs ..45
 6.1.1 ETICs Panels ..45
 6.1.2 Ventilated Panels ...46
 6.1.3 Radiant Panels ..46

Conclusion ...47
The Deliverable 4.1 “Identification of the best solutions for an easy installation and disassembly of panels based on architectural evaluation and costs” is a confidential report delivered in the context of WP4, Task 4.1: “Definition of installation/dismantling technologies and methodologies” concerning the definition of a method of installation of prototyped panels.

The aim is to identify the best solution in term of ease and quality of installation to obtain the final insulating geopolymeric panel surface. An in-depth study was be done in relation to the usable fastening systems, especially for the ventilated façade for which fixings play a main role in the installation. In this document a remarkable part is dedicated to a detailed description of the installation test of the panels carried out in Padua, Italy, on April 2018.

Furthermore, particular attention will be given to the costs of operation, evaluation that will be useful to the whole costs cycle analyses that will be developed.

The report includes the following information: description of the ETICs, Ventilated and radiant ceiling/walls panels, an accurate description of the anchoring systems, explanation of installation and dismantling of the panels, mention of pilot and real demo installation sites and an evaluation of costs always related to installation.
List of Figures

- Figure 1 – Sketch of ETICS-like panel...12
- Figure 2 - Rendering of the ETICs panel..13
- Figure 3 - ETICs prototype panel...13
- Figure 4 - Fasteners location on the ETICs panel..14
- Figure 5 - Thermal-break fasteners..14
- Figure 6 - Section of the fastener ..15
- Figure 7 - Disposition of adhesive on the ETICS-like panel 100×50 cm²..............16
- Figure 8 - Cement mortar (Mapetherm AR1 Light)..17
- Figure 9 - Silicon Sealing (Mapeisil LM) ...18
- Figure 10 - Freestanding wall for the test installation...20
- Figure 11 - Lower support installation..20
- Figure 12 - Mortar application...21
- Figure 13 - Panels gluing ...21
- Figure 14 – Drilling holes for fasteners..22
- Figure 15 - Mechanical fasteners..22
- Figure 16 - Sealing of the EPS panels..23
- Figure 17 - Installation of the remaining panels..23
- Figure 18 - Joints filling ...24
- Figure 19 - Metal flashing installation ..24
- Figure 20 – Ventilated prototype panel...26
- Figure 21 - Fasteners location..27
- Figure 22 - Four-rib prototype ...27
- Figure 23 - Full pins and half pins ...28
- Figure 24 - Spade bolt versions for HRM/HRC...28
- Figure 25 - HALFEN HRC Body Anchor ...29
- Figure 26 - Longitudinal section of the anchor system...29
- Figure 27 - Freestanding wall for the test installation...31
- Figure 28 – Anchors fastening ...32
- Figure 29 – On site drilling ..32
- Figure 30 – Installation of the first panel..33
Figure 31 - check of the levelling of the panel ...33
Figure 32 - Installation of the other panels ...34
Figure 33 - Metal flashing installation ...34
Figure 34 - ETICs and ventilated façade ...36
Figure 35 - Radiant ceiling panel ...37
Figure 36 - Radiant ceiling prototype panel ...37
Figure 37 - Piping system ...38
Figure 38 - False ceiling panels installation ...38
Figure 39 - Omega profile ...39
Figure 40 - Radiant wall panel ...39
Figure 41 - Radiant wall prototype panel ...40
Figure 42 - Painted WGP with mounted the piping system ...40
Figure 43 - Fasteners for installation ...41
Figure 44 - Pilot house, Padua (Italy) ...42
Figure 45 - Old city of Voula, Athens (Greece) ...43
Figure 46 - Residential Eco-house, Putte-Mechelen (Belgium) ...43
Figure 47 - Don Orione Residential Care Centre, Voluntari, Bucharest (Romania) ...44
List of Tables

Table 1 - Product identity Mapetherm AR1 Light ..17
Table 2 - Application data and final performance of Mapetherm AR1 ...18
Table 3 - Application data and final performance of Mapesil LM ...19
Table 4 - Technical data of the anchors ..30
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InnoWEE</td>
<td>Innovative pre-fabricated components including different Waste construction materials reducing building Energy and minimising Environmental impacts</td>
</tr>
<tr>
<td>CDW</td>
<td>Construction and Demolition Waste</td>
</tr>
<tr>
<td>EoL</td>
<td>End of Life</td>
</tr>
<tr>
<td>EPS</td>
<td>Expanded PolyStyrene</td>
</tr>
<tr>
<td>ETICs</td>
<td>External Thermal Insulation Composite System</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Modelling</td>
</tr>
<tr>
<td>HDG</td>
<td>High Density Geopolymer</td>
</tr>
<tr>
<td>PGA</td>
<td>Peak Ground Acceleration</td>
</tr>
<tr>
<td>SRM</td>
<td>Secondary Raw Material</td>
</tr>
<tr>
<td>WGP</td>
<td>Wood Geopolymer Panel</td>
</tr>
<tr>
<td>WP</td>
<td>Work Package</td>
</tr>
<tr>
<td>XPS</td>
<td>Extrude PolyStyrene</td>
</tr>
</tbody>
</table>
InnoWEE D4.1 “Identification of the best solutions for an easy installation and disassembly of panels based on architectural evaluation and costs”

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_y</td>
<td>Yielding Strength</td>
<td>[N mm$^{-2}$]</td>
</tr>
<tr>
<td>q_p</td>
<td>Wind pressure</td>
<td>[N m$^{-2}$]</td>
</tr>
<tr>
<td>v_{b0}</td>
<td>Basic Wind Velocity</td>
<td>[m s$^{-1}$]</td>
</tr>
</tbody>
</table>