Deliverable D1.5
Environmental performance during the whole life cycle (LCA)

Grant Agreement number 723916
Project acronym InnoWEE
Project full title INNOvative pre-fabricated components including different Waster construction materials reducing building Energy and minimising Environmental impacts
Due date of deliverable 31/05/2020
Lead beneficiary ZAG
Other authors CNR-ITC, AMS, IZNAB

Dissemination Level

PU	Public
CO	Confidential, only for members of the consortium (including the Commission Services)
CI	Classified, as referred to in Commission Decision 2001/844/EC
Document History

Disclaimer

This document is the property of the InnoWEE Consortium.

This document may not be copied, reproduced, or modified in the whole or in the part for any purpose without written permission from the InnoWEE Coordinator with acceptance of the Project Consortium.

This publication was completed with the support of the European Commission under the *Horizon 2020 research and innovation programme*. The contents of this publication do not necessarily reflect the Commission’s own position. The document reflects only the author’s views and the Community is not liable for any use that may be made of the information contained therein.
Contents

Publishable summary .. 5
List of Figures ... 7
List of Tables ... 9
Abbreviations .. 11
Introduction .. 14
1 Product description .. 15
2 Application of the LCA methodology ... 17
 2.1 Goal and scope of the LCA ... 17
 2.1.1 Goal of the study ... 17
 2.1.2 Declared unit ... 17
 2.1.3 System boundaries ... 18
 2.2 Life Cycle Inventory .. 22
 2.2.1 Bill of Materials .. 23
 2.2.2 Life cycle inventory datasets ... 25
 2.3 Life Cycle Impact Assessment (LCIA) ... 32
 2.4 Life Cycle Interpretation ... 38
3 LCA modelling approach .. 40
 3.1 Upstream modelling ... 40
 3.1.1 Meta-kaolin .. 40
 3.1.2 Potassium silicate ... 42
 3.1.3 Construction demolition waste (CDW) ... 44
 3.1.3.1 CDW End of Life allocation .. 48
 3.2 Life Cycle scenario .. 52
 3.2.1 Product stage scenario .. 52
 3.2.2 Construction process stage scenario .. 52
 3.2.3 Use stage scenario .. 52
 3.2.4 End-of-life stage scenario .. 52
 3.2.5 Benefits and loads beyond the system boundary stage scenario 53
4 Impact assessment Results ... 55
 4.1 Impact Assessment Results with CML 2001 – Full life cycle (modules A-D) 55
 4.2 Impact Assessment Results with ReCiPe – modules A-C .. 66
 4.3 Impact Assessment results with Ecoindicator 99 – modules A1-C4 75
 4.4 Impact Assessment Results with EN 15804 (2019) – module D 82
 4.5 Comparison of results - CML 2001 and ReCiPe Midpoint .. 88
 4.6 Comparison between different End-of-Life methods of calculation for panels 89
5 Hotspots analysis and optimisation of the production line environmental burdens 96
 5.1 Optimisation for ETICS-like panels ... 97
 5.1.1 Optimisation for ETICS-like panels at Pilot plant level ... 97
 5.1.2 Optimisation for ETICS-like panels at Large production level – Upscaling 105
 5.1.3 Comparison of optimised results for ETICS-like panels with commercial ETICS on EPS panels .. 107
 5.2 Optimisation for Cladding panels .. 109
 5.2.1 Optimisation for Cladding panels at Pilot plant level ... 109
 5.2.2 Optimisation for Cladding panels at Large production level – Upscaling 116
 5.2.3 Comparison of optimised results for Cladding panels with commercial Large-size fibre cement coated panels ... 118
 5.3 Optimisation for Radiant panels ... 121
 5.3.1 Optimisation for Radiant panels at Pilot plant level ... 121
5.3.2 Optimisation for Radiant panels at Large production level – Upscaling..............................127
5.3.3 Comparison between optimisation scenarios for Radiant panels129
5.4 Comparison of environmental burdens of cement based façade panels compared to the panels geopolymer developed in the InnoWEE project ...131

6 Interpretation of the LCA and conclusions...133

References..136
Publishable summary

Deliverable D1.5 “Environmental performance during the whole life cycle (LCA)” presents the Life Cycle Assessment (LCA) of the whole life cycle of three innovative types of panels – ETICS-like, Cladding and Radiant panels, developed during InnoWEE project. The main objective of the LCA study conducted is to investigate the environmental impacts associated with different life cycle stages of the prefabricated geopolymeric panels made from large fractions of recycled Construction and Demolition Waste (CDW). The LCA study has been conducted in accordance with the principles and framework for LCA, which are defined in the international standard for LCA ISO 14040 and ISO 14044. We have also considered European standard for Environmental Product Declarations (EPD) EN 15804: 12 + A2: 2019, which provides core product category rules (PCR) for Type III environmental declarations for any construction product and construction service. The study consists of four phases: the goal and scope definition, inventory analysis, impact assessment and interpretation phase where optimisations of the production processes and comparisons with commercial products were assessed. We have used Thinkstep Gabi software combined with Ecoinvent and Gabi databases to perform calculations.

LCA impact assessment was conducted with three LCA methods (CML, Recipe and Ecoindicator 99) as well as three different end-of-life methods of calculations of burdens and benefits beyond the system boundary. The comparison of the results of, obtained by using different impact assessment methods shows that at the midpoint there is little, though notable influence of the selection of the impact assessment method. New version of EN 15804 standard and thus new EPDs combine different methods in reporting the parameters. The CML method has been used in the study for final comparisons of the results, obtained for the InnoWEE products and the performance as declared in individual EPDs for established products on the market was done for parameters calculated according to the CML method, because the CML method is mainly used in the EPDs which are the source of the data for the comparison.

From the methodological point of view the direct comparison of the LCA results for two different systems is strongly advised against discouraged because the influences of the calculation rules may be too high. Furthermore, there are always differences such as reference service life, applicability in different climates, a need for repair, cleaning etc. that set different building products and materials apart and thus comparisons are usually very difficult. Therefor comparisons, given in the analysis are informative, only, as it was not possible to do the calculations for the InnoWEE products following the exact same rules as in the case of well-established products.

Deeper analysis of the InnoWEE products has revealed the environmental hot-spots in the whole life cycle of the products that can be used as a guideline during the large scale production set-up. Due to the nature of the production, which is currently established at the pilot line level with sub-optimal transport path lengths, LCA has revealed opportunities to lower the environmental footprint of the production primarily by the optimisation of electricity and secondarily by optimising the transport path, since those are the two most
critical hot-spots. To further explore the environmental potential of the InnoWEE products, four different scenarios for optimizing the environmental footprint of the electricity were studied, showing that significant a reduction of the impact that can be achieved if renewable energy sources, e.g. solar energy, are introduced into the production.

We have studied all life cycle stages of the products namely the production phase, the product use phase, end of life stage as well as benefits and loads beyond the system boundary. Finally, the overall assessment has shown that most of the environmental burdens arise from the production process (A1-A3). Within that, energy use in production process is dominant, but with the transport contribution not negligible. Because of the use of CDW the Indicators related to the use of resources are much more favourable in the InnoWEE products when compared to the competitive products due to the CDW use. In the case of contribution to the global warming the comparison is ambiguous because of different levels of the industrialization. Nonetheless it is shown that after full industrialization and smart use of renewable energy sources also the GWP can be substantially reduced compared to the competitive products.

We can conclude that from the environmental performance point of view confirmed through calculating life cycle assessment all innovative products developed during InnoWEE project are very promising and further research in this direction will be productive and desired. The main point of developing such products is lowering the use of virgin materials and seeking new ways to reuse and recycle demolished building materials that are otherwise landfilled and disposed of. There is a final quantity of virgin materials that Earth can offer and final space that landfilled products can occupy. Attempts to help with this challenges are more that welcome.
List of Figures

Figure 1: ETICS-like panel dimensions ... 15
Figure 2: Cladding panel dimensions ... 16
Figure 3: Radiant panel dimensions ... 16
Figure 4: The schematic representation of system boundaries 20
Figure 5: Representation of A1-A3 module .. 21
Figure 6: ETICS-like panel mass shares ... 23
Figure 7: Cladding panel mass shares ... 24
Figure 8: Radiant panel mass shares ... 25
Figure 9: The schematic representation of the upstream LCA model for the production of Metakaolin.... 40
Figure 10: Graphical representation of results for 1 kg of Metakaolin with CML 2001 Method 42
Figure 11: Schematic representation of the upstream model for the production of Potassium Silicate... 43
Figure 12: Graphical representation of results for 1 kg of Potassium Silicate with CML 2001 Method...... 44
Figure 13: Schematic representation of the upstream model for the production of CDW............................. 46
Figure 14: Graphical representation of results for 1 kg of CDW with CML 2001 Method........................... 48
Figure 15: Comparison of different allocations for CDW .. 50
Figure 16: Schematic representation of CDW benefits and loads beyond the system boundary
implemented in panels benefits and loads beyond the system boundary................................. 51
Figure 17: The end-of-life stage of the prefabricated geopolymeric panels, where RR is the applied
recycling rate for the geopolymer (Gervasio and Dimova, 2018) ... 54
Figure 18: Graphical representation of LCA results (Method CML 2001) - ETICS-like panels 59
Figure 19: Graphical representation of LCA results (Method CML 2001) - Cladding panels 59
Figure 20: Graphical representation of LCA results (Method CML 2001) - Radiant panels 60
Figure 21: Graphical representation of A1-A3 LCA results (Method CML 2001) - ETICS-like panels....... 64
Figure 22: Graphical representation of A1-A3 LCA results (Method CML 2001) - Cladding panels 65
Figure 23: Graphical representation of A1-A3 LCA results (Method CML 2001) – Radiant panels 65
Figure 24: Graphical representation of ReCiPe midpoint (H) results - ETICS-like panels 67
Figure 25: Graphical representation of ReCiPe midpoint (H) results -Cladding panels 70
Figure 26: Graphical representation of ReCiPe midpoint (H) results -Radiant panels 73
Figure 27: Graphical representation of percentile shares for Ecoindicator 99 for EA, HA and IA -
ETICS-like panels ... 77
Figure 28: Graphical representation of percentile shares for Ecoindicator 99 for EA, HA and IA -
Cladding panels ... 79
Figure 29: Graphical representation of percentile shares for Ecoindicator 99 for EA, HA and IA –
Radiant panels .. 81
Figure 30: ETICS-like panel: Product stage results (CDW: Cut-off) ... 90
Figure 31: ETICS-like panel: Product stage results (CDW: 50% - 50%) ... 90
Figure 32: ETICS-like panel: Product stage results (CDW: 100% - 0%) ... 91
Figure 33: Cladding panel: Product stage results (CDW: Cut-off) .. 92
Figure 34: Cladding panel: Product stage results (CDW: 50% - 50%) ... 92
Figure 35: Cladding panel: Product stage results (CDW: 100% - 0%) ... 93
Figure 36: Radiant panel: Product stage results (CDW: Cut-Off) ... 94
Figure 37: Radiant panel: Product stage results (CDW: 50 - 50) ... 94
Figure 38: Radiant panel: Product stage results (CDW: 100% - 0%) .. 95
Figure 39: Energy optimisation Option 1 for ETICS-like panels .. 100
Figure 40: Energy optimisation Option 2 for ETICS-like panels .. 101
Figure 41: Energy optimisation Option 3 for ETICS-like panels .. 102
Figure 42: Energy optimisation Option 4 for ETICS-like panels .. 103
Figure 43: Reduction of environmental burdens for Options 1 - 4 for ETICS-like panels 103
Figure 44: Reduction of environmental burdens for Thickness reduction optimisation for ETICS-like panels .. 105
Figure 45: Local Transport distance reduction of environmental burdens – ETICS-like panels 107
Figure 46: GWP comparison between InnoWEE ETICS-like panel and ETICS in EPS Commercial panel .. 108
Figure 47: DP el. comparison between InnoWEE ETICS-like panel and ETICS in EPS Commercial panel . 108
Figure 48: PENRT comparison between InnoWEE ETICS-like panel and ETICS in EPS Commercial panel 109
Figure 49: Energy optimisation Option 1 for Cladding panels ... 111
Figure 50: Energy optimisation Option 2 for Cladding panels ... 112
Figure 51: Energy optimisation Option 3 for Cladding panels ... 113
Figure 52: Energy optimisation Option 4 for Cladding panels ... 114
Figure 53: Reduction of environmental burdens for Options 1 - 4 for Cladding panels 115
Figure 54: Reduction of environmental burdens for Thickness reduction for Cladding panels 116
Figure 55: Local Transport distance reduction of environmental burdens – Cladding panels 118
Figure 56: GWP comparison between InnoWEE Cladding Panels and commercial Fibre cement coated panels .. 119
Figure 57: ADP el. comparison between InnoWEE Cladding Panels and commercial Fibre cement coated panels .. 120
Figure 58: PENRT comparison between InnoWEE Cladding Panels and commercial Fibre cement coated panels .. 120
Figure 59: Energy optimisation Option 1 for Radiant panels ... 123
Figure 60: Energy optimisation Option 2 for Radiant panels ... 124
Figure 61: Energy optimisation Option 3 for Radiant panels ... 125
Figure 62: Energy optimisation Option 4 for Radiant panels ... 126
Figure 63: Reduction of environmental burdens for Options 1 - 4 for Radiant panels 127
Figure 64: Local Transport distance reduction of environmental burdens ... 129
Figure 65: Comparison between optimisation scenarios for Radiant panels - GWP 130
Figure 66: Comparison between optimisation scenarios for Radiant panels - ADP el. 130
Figure 67: Comparison between optimisation scenarios for Radiant panels – PENRT 131
Figure 68: Comparison between EPD results for fibre cement facade panels and InnoWEE panels per 1 kg in percentages (ETICS-like panel being 100%) .. 132
Figure 69: Average use of energy for all three types of panels .. 133
Figure 70: GWP comparison for three types of panels [%] .. 134
List of Tables

Table 1: Material bill for ETICS-like panels ... 23
Table 2: Material bill for Cladding panels .. 23
Table 3: Material bill for Radiant panels .. 24
Table 4: Life cycle inventory – inputs information for ETICS-like panels 25
Table 5: Life cycle inventory – inputs information for Cladding panels 28
Table 6: Life cycle inventory – inputs information for radiant panels 30
Table 7: CML 2001 midpoint impact categories .. 33
Table 8: The primary energy demand and the total use of fresh water potentials 34
Table 9: ReCiPe 2016 Endpoint impact categories ... 34
Table 10: ReCiPe 2016 Midpoint impact categories .. 34
Table 11: Eco-indicator 99 endpoint perspectives, categories and impacts 35
Table 12: EN 15804 (2019) - Value correction factor (Q) ... 36
Table 13: EN 15804 (2019) - Quantities (M) .. 36
Table 14: EN 15804 (2019) - Specific emissions and resources per unit of analysis (E) 37
Table 15: EN 15804 (2019) - Specific emissions and resources per unit of analysis of outputs (e) ... 37
Table 16: EN 15804 (2019) - Efficiency (X) ... 38
Table 17: EN 15804 (2019) - Lower heating value (LHV) .. 38
Table 18: Materials and energy consumption for 1 kg of Metakaolin ... 41
Table 19: Results for 1 kg of Metakaolin with CML 2001 method, the primary energy demand and the total use of fresh water potentials ... 41
Table 20: Materials and energy consumption for 1 kg of Potassium Silicate 42
Table 21: Results for 1 kg of Potassium Silicate with CML 2001 method, the primary energy demand and the total use of fresh water potentials ... 44
Table 22: CDW composition .. 46
Table 23: Materials and energy consumption for the processing of CDW 47
Table 24: Results for 1 kg of CDW with CML 2001 method, the primary energy demand and the total use of fresh water potentials ... 47
Table 25: Allocation of CDW burdens and benefits ... 50
Table 26: Results of the whole life cycle with CML 2001 method - ETICS-like panels 56
Table 27: Results of the whole life cycle with CML 2001 method - Cladding panels 57
Table 28: Results of the whole life cycle with CML 2001 method – Radiant panels 58
Table 29: Production stage A1-A3 CML 2001 Results – ETICS-like panels 61
Table 30: Production stage A1-A3 CML 2001 Results – Cladding panels 62
Table 31: Production stage A1-A3 CML 2001 Results – Radiant panels 63
Table 32: Results for ReCiPe Method – Midpoint (H) – ETICS-like panels 66
Table 33: Results for ReCiPe Method – Endpoint (H) – ETICS-like panels 68
Table 34: Results for ReCiPe Method – Midpoint (H) – Cladding panels 69
Table 35: Results for ReCiPe Method – Endpoint (H) – Cladding panels 71
Table 36: Results for ReCiPe Method – Midpoint (H) – Radiant panels 72
Table 37: Results for Ecoindicator 99 Method – ETICS-like panels ... 76
Table 38: Results for Ecoindicator 99 Method – Cladding panels .. 78
Table 39: Results for Ecoindicator 99 Method – Radiant ... 80
Table 40: Value correction factor, Efficiency, Quantities and Lower heating value calculations for ETICS-like panel .. 82
Table 41: Specific emissions and resources per unit of analysis calculations for ETICS-like panels 83
Table 42: Specific emissions and resources per unit of outputs calculations for ETICS-like panels 84
Table 43: Value correction factor, Efficiency, Quantities and Lower heating value calculations for Cladding panels .. 84
Table 44: Specific emissions and resources per unit of analysis calculations for Cladding panels 85
Table 45: Specific emissions and resources per unit of outputs calculations for Cladding panels 86
Table 46: Value correction factor, Efficiency, Quantities and Lower heating value calculations for Radiant panels .. 86
Table 47: Specific emissions and resources per unit of analysis calculations for Radiant panels 87
Table 48: Specific emissions and resources per unit of outputs calculations for Radiant panels 88
Table 49: Comparison of results - CML 2001 and ReCiPe Midpoint (comparable results only) for ETICS-like panels .. 88
Table 50: Comparison between A1 - A3 results for ETICS-like panels for three different allocation methods of CDW ... 89
Table 51: Comparison between A1 - A3 results for Cladding panels for three different allocation methods of CDW ... 91
Table 52: Comparison between A1 - A3 results for Radiant panels for three different allocation methods of CDW ... 93
Table 53: Energy consuming processes for optimisation .. 98
Table 54: Results for ETICS-like panels with Option 1 energy optimisation .. 99
Table 55: Results for ETICS-like panels with Option 2 energy optimisation .. 100
Table 56: Results for ETICS-like panels with Option 3 energy optimisation .. 101
Table 57: Results for ETICS-like panels with Option 4 energy optimisation .. 102
Table 58: Results for ETICS-like panels with Thickness reduction optimisation 104
Table 59: length of real transport paths in pilot line production (current) and expected length of transport paths after upscaling (local) – ETICS-like panels .. 106
Table 60: Results for Current and Local transport of input materials for ETICS-like panels 106
Table 61: Energy consuming processes for optimisation .. 109
Table 62: Results for Cladding panels with Option 1 energy optimisation .. 111
Table 63: Results for Cladding panels with Option 2 energy optimisation .. 112
Table 64: Results for Cladding panels with Option 3 energy optimisation .. 113
Table 65: Results for Cladding panels with Option 4 energy optimisation .. 114
Table 66: Results for Cladding panels with Thickness reduction optimisation 115
Table 67: length of real transport paths in pilot line production (current) and expected length of transport paths after upscaling (local) – Cladding panels ... 117
Table 68: Results for Current and Local transport of input materials for Cladding panels 117
Table 69: Energy consuming processes for optimisation - Radiant panels .. 121
Table 70: Results for Radiant panels with Option 1 energy optimisation .. 122
Table 71: Results for Radiant panels with Option 2 energy optimisation .. 123
Table 72: Results for Radiant panels with Option 3 energy optimisation .. 124
Table 73: Results for Radiant panels with Option 4 energy optimisation .. 125
Table 74: length of real transport paths in pilot line production (current) and expected length of transport paths after upscaling (local) - Radiant panel

Table 75: Results for Current and Local transport of input materials for Radiant panels

Table 76: Comparison between EPD results for fibre cement facade panels and InnoWEE panels per 1 kg

Abbreviations

ADP el. Abiotic depletion (elements)
ADP fos. Abiotic depletion (fossil)
AP Acidification potential
CDW Construction Demolition Waste
DALY disability adjusted life years
E The specific emissions and resources consumed per unit of analysis
e Specific emissions and resources consumed per unit of output
ED Damage to ecosystem quality
EERAfterEOWIn Specific emissions and resources consumed per unit of analysis arising from combustion of secondary fuel entering from a previous system
EERAfterEOWOut Specific emissions and resources consumed per unit of analysis arising from processing and combustion of secondary fuels in a subsequent system after the end of waste status
EERAverage Specific emissions and resources per unit of analysis that would have arisen from specific current average substituted energy source: heat and electricity
EERBeforeEoWOut Specific emissions and resources consumed per unit of analysis arising from processing of waste destined to be used as material for energy recovery of a subsequent system before the end of waste status
EF Environmental Footprint
EINC Specific emissions and resources consumed per unit of analysis arising from incineration of waste
ELF Specific emissions and resources consumed per unit of analysis arising from landfill
eModuleA specific emissions and resources per unit of output for modules A1–A3
eModuleA* specific emissions and resources per unit of output for modules A1–A3 including incineration and co-incineration of waste (gross value)
eModuleC specific emissions and resources per unit of output for module C
eModuleD specific loads and benefits per unit of output for module D
eModuleD1 specific loads and benefits per unit of analysis for module D related to the export of secondary materials
eModuleD2 specific loads and benefits per unit of analysis for module D related to the export of secondary fuels
eModuleD3 Specific loads and benefits per unit of output for module D related to the export of energy as a result of waste incineration (for R1<60% and R1>60%)
EMRAfterEoWIn Specific emissions and resources consumed per unit of analysis arising from material recovery (recycling and reusing) processes of the previous system after the end of waste status
EMRAfterEoWOut Specific emissions and resources consumed per unit of analysis arising from material recovery (recycling and reusing) processes of a subsequent system after the end of waste status
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMRBeforeEoWOut</td>
<td>Specific emissions and resources consumed per unit of analysis arising from material recovery (recycling and reusing) processes of the current system until the end of waste status is reached</td>
</tr>
<tr>
<td>EOL</td>
<td>End-Of-Life</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
</tr>
<tr>
<td>EPD</td>
<td>Environmental Product Declaration</td>
</tr>
<tr>
<td>ePE</td>
<td>Specific emissions and resources per unit of output arising from energy consumption coming from primary sources</td>
</tr>
<tr>
<td>EPS</td>
<td>Expanded Polystyrene</td>
</tr>
<tr>
<td>ESEEic</td>
<td>Specific emissions and resources consumed per unit of analysis that would have arisen from specific current average substituted energy source: electricity</td>
</tr>
<tr>
<td>ESEHeat</td>
<td>Specific emissions and resources consumed per unit of analysis that would have arisen from specific current average substituted energy source: heat</td>
</tr>
<tr>
<td>ETICS</td>
<td>External Thermal Insulation Composite System</td>
</tr>
<tr>
<td>EVMIn</td>
<td>Specific emissions and resources consumed per unit of analysis arising from acquisition and pre-processing of primary material in the production of the product</td>
</tr>
<tr>
<td>EVMSubOut</td>
<td>Specific emissions and resources consumed per unit of analysis arising from acquisition and pre-processing of the primary material</td>
</tr>
<tr>
<td>FAETP</td>
<td>Freshwater aquatic ecotoxicity potential</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
</tr>
<tr>
<td>GWP excl. biog. carbon</td>
<td>Global warming potential excluding biogenic carbon</td>
</tr>
<tr>
<td>HDG</td>
<td>High Density Geopolymer</td>
</tr>
<tr>
<td>HH</td>
<td>Damage to Human health</td>
</tr>
<tr>
<td>HTP</td>
<td>Human toxicity potential</td>
</tr>
<tr>
<td>ILCD</td>
<td>International Reference Life Cycle Data System</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LCI</td>
<td>Life Cycle Inventory</td>
</tr>
<tr>
<td>LCIA</td>
<td>Life Cycle Impact Assessment</td>
</tr>
<tr>
<td>LCT</td>
<td>Life Cycle Thinking</td>
</tr>
<tr>
<td>LHV</td>
<td>Lower heating value of the material</td>
</tr>
<tr>
<td>M</td>
<td>Amount of material used for each material flow</td>
</tr>
<tr>
<td>MAETP</td>
<td>Marine aquatic ecotoxicity potential</td>
</tr>
<tr>
<td>MERIn</td>
<td>Amount of material entering the product system that has reached the end of waste status before incineration in a previous system and enters the product system as secondary fuel</td>
</tr>
<tr>
<td>MEROut</td>
<td>Amount of material leaving the product system where it has reached the end of waste status before incineration and leaves the product system as secondary fuel</td>
</tr>
<tr>
<td>MINCIn</td>
<td>Amount of waste generated by a previous system that has been incinerated with efficiency of energy recovery lower than 60 % or that is used for energy recovery with energy efficiency greater than 60 % but has not reached the end of waste status</td>
</tr>
<tr>
<td>MINCOut</td>
<td>Amount of waste that will be incinerated with efficiency of energy recovery lower than 60 % or that is used for energy recovery with energy efficiency greater than 60 % but which has not reached the end of waste status</td>
</tr>
<tr>
<td>MLF</td>
<td>Amount of material in the product that will be landfilled</td>
</tr>
<tr>
<td>MMRIn</td>
<td>Amount of input material to the product system that has been recovered</td>
</tr>
</tbody>
</table>
(recycled or reused) from a previous system

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMROut</td>
<td>Amount of material exiting the system that will be recovered (recycled and reused) in a subsequent system</td>
</tr>
<tr>
<td>MVMIn</td>
<td>Amount of input material to the product system that has been obtained from primary materials</td>
</tr>
<tr>
<td>ODP</td>
<td>Ozone layer depletion potential</td>
</tr>
<tr>
<td>PCR</td>
<td>Product Category Rules</td>
</tr>
<tr>
<td>PEF</td>
<td>Product Environmental Footprint</td>
</tr>
<tr>
<td>PENRT</td>
<td>Primary energy from non-renewable resources</td>
</tr>
<tr>
<td>PERT</td>
<td>Primary energy from renewable resources</td>
</tr>
<tr>
<td>POCP</td>
<td>Photochemical ozone potential creation</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>Q</td>
<td>Quality of the material</td>
</tr>
<tr>
<td>QROut</td>
<td>Quality of the outgoing recovered material (recycled and reused)</td>
</tr>
<tr>
<td>QROut/Qsub</td>
<td>Quality ratio between outgoing recovered material (recycled and reused) and the substituted material</td>
</tr>
<tr>
<td>Qsub</td>
<td>Quality of the substituted material</td>
</tr>
<tr>
<td>RA</td>
<td>Damage to resource availability</td>
</tr>
<tr>
<td>SUM</td>
<td>Summarised</td>
</tr>
<tr>
<td>TETP</td>
<td>Terrestrial ecotoxicity potential</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WATER</td>
<td>Fresh water consumption</td>
</tr>
<tr>
<td>WG</td>
<td>Wood Geopolymer</td>
</tr>
<tr>
<td>X</td>
<td>The efficiency of the energy process</td>
</tr>
<tr>
<td>XERElec</td>
<td>Efficiency of the energy recovery process for electricity</td>
</tr>
<tr>
<td>XERHeat</td>
<td>Efficiency of the energy recovery process for heat</td>
</tr>
<tr>
<td>XINCElec</td>
<td>Efficiency of the incineration process for electricity</td>
</tr>
<tr>
<td>XINCHeat</td>
<td>Efficiency of the incineration process for heat</td>
</tr>
<tr>
<td>XLFElec</td>
<td>Efficiency of the landfilling process for electricity</td>
</tr>
<tr>
<td>XLFHeat</td>
<td>Efficiency of the landfilling process for heat</td>
</tr>
</tbody>
</table>